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We investigate the mechanics of ice streams and glaciers flowing over a bed consisting
of Coulomb-plastic subglacial sediment, or more generally, of channel flows with
Coulomb or ‘solid’ friction laws at the boundary. Sliding is assumed to occur if
shear stress at the glacier bed attains a prescribed, locally defined yield stress, while
no sliding is assumed possible below that yield stress. Importantly, the location of
regions of slip and no slip at the bed is not known a priori, but forms part of the
solution. By analogy with friction problems in elasticity, we derive a weak formulation
as a semi-coercive variational inequality, which admits a unique solution provided a
solvability condition ensuring force balance is satisfied. The variational formulation
is then exploited to calculate numerical solutions, and we investigate the effect of
variations in subglacial water pressure, ice thickness and surface slope on the discharge
of a valley glacier with a plastic bed. Significant differences are found between the
behaviour of wide and narrow as well as steep and shallow-angled glaciers, and
our results further indicate the need to develop models capable of accounting for
longitudinal stresses.

1. Introduction
Many dynamical phenomena in glaciology occur because valley glaciers and ice

sheets are able to slide over their beds. For instance, some temperate valley glaciers
‘surge’, that is, they undergo periodic episodes of dramatic increase in their flow
velocities which are associated with rapid lengthening and thinning of the glacier.
These surges are thought to be caused by changes in the subglacial meltwater drainage
system, which in turn affect the amount of lubrication available at the glacier sole and
hence the sliding motion of the glacier (Kamb et al. 1985). Similarly, some ice sheets
are characterized by the presence of relatively narrow bands of rapidly flowing ice
known as ice streams, which are surrounded by more slowly moving ice ridges (Alley &
Bindschadler 2001). The high discharge of these ice streams often cannot be explained
by shearing in the ice itself, but must be accounted for by rapid sliding at the bed.

The processes by which glaciers and ice sheets are able to slide depend on the
physical properties of the underlying bed. If the latter consists of clean, undeformable
bedrock, sliding occurs by a combination of regelation and creep deformation around
bed undulations (see e.g. Fowler 1981). More commonly, glaciers are underlain by
glacial sediments known as till. Sliding in that case occurs as a result of mechanical
failure at the ice–till interface or within the till, which is thought to be empirically
well-described in both cases by a simple Coulomb failure criterion (Iverson et al.
1998, 1999; Tulaczyk 1999; Tulaczyk, Kamb & Engelhardt 2000). If the subglacial till
layer is thin compared with the thickness of the overlying ice, the simplest conceivable
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boundary condition for ice flow over a deformable bed then takes the form of a ‘solid’
or Coulomb friction law. This allows for sliding when shear stress at the bed reaches
a critical stress τc, which in turn is an affine function of compressive normal stress at
the bed, while no slip occurs when τc is not attained. Under a real glacier, the second
of these assumptions may not be realized in practice: even if the bed does not deform,
sliding may still occur as a result of processes such as regelation which allow glacier
sliding over undeformable beds (similar behaviour arises for sliding over hard beds
in the presence of cavitation, see Schoof 2005). In this study, our main interest is the
effect of solid friction-type basal boundary conditions on glacier flow rather than a
detailed study of physical processes in subglacial till and at the ice–till interface. In this
spirit, we assume that sliding velocities are insignificant when the critical shear stress
τc is not attained, and further ignore a number of other complications which may
arise in the deformation of plastic tills (see e.g. dell’Isola & Hutter 1998; Fowler 2003).

Coulomb friction laws as boundary conditions for glacier flow were previously
studied by Reynaud (1973) and Pélissier & Reynaud (1974), and interest in the
mechanics of glaciers with solid friction at the bed has been revived as a result of
experimental studies of till rheology (Truffer, Echelmeyer & Harrison 2001, Schoof
2004b). Elsewhere in fluid dynamics, Coulomb friction laws have been used as
boundary conditions on viscoplastic materials (e.g. Adams et al. 1997; Sherwood &
Durban 1998). Both of the earlier papers by Reynaud (1973) and Pélissier & Reynaud
(1974) made the assumption that sliding occurs everywhere at the bed. This restricts
their channel flow model to the marginal case in which the gravitational driving
force on a given glacier cross-section is balanced exactly by the maximum friction
force which the bed can exert. By contrast, Truffer et al. (2001) and Schoof (2004b)
were concerned with the case in which sliding does not occur everywhere at the bed,
but in which there are patches where the ice is ‘stuck’ to the bed. This scenario is
not only relevant to the flow of valley glaciers when the gravitational driving force is
less than the maximum friction force which the bed is able to generate, but is also of
central interest in the study of ice streams, where the transition from rapid sliding to
no (or little) sliding manifests itself in the form of heavily crevassed ‘shear margins’
(Harrison, Echelmeyer & Larson 1998; Raymond et al. 2001).

Our aim in the present paper is to set out a consistent theoretical framework
for studying the glacier flow problem considered in Truffer et al. (2001) and Schoof
(2004b), or more generally, the mechanical problem of an incompressible power-law
fluid flowing at zero Reynolds number in a channel with a solid friction law at the
boundary. From a practical point of view, the main concern here is that the parts of
the bed on which sliding occurs are not known a priori, but are determined implicitly
by inequality constraints on shear stress and velocity at the bed. By analogy with
friction problems in elasticity, we develop a variational formulation which is then
used to compute numerical solutions in a more systematic manner than in Truffer
et al. (2001). Lastly, we consider how variations in subglacial water pressure, ice
thickness and ice surface slope affect the discharge of a glacier underlain by a
plastic till bed. A relationship between these quantities and ice flux is essential in
constructing large-scale models of glaciers, but appears to have been considered
previously only for glaciers with so-called hard-bed sliding laws at the boundary (e.g.
Fowler & Larson 1978; Fowler 1987a).

2. Model
We consider a glacier of constant thickness occupying an inclined straight channel

of uniform cross-section and align the y-axis of a Cartesian coordinate system with
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Figure 1. The geometry of the problem. The domain shown in (b) corresponds to a confined
valley glacier, whereas (c), where periodic boundary conditions apply along Γp , applies to a
repeated pattern of ice streams. In this case, the variational method of § 3 still applies, but
admissible functions are restricted to the class of functions in W 1,p(Ω) which are periodic on
Γp in the trace sense.

the downstream direction, while the x-axis is oriented horizontally and at right angles
to the downstream direction (see figure 1). We further assume that the mechanical
properties of the glacier bed do not depend on y, so the flow of the glacier is uniaxial
and oriented in the y-direction (in glaciology, this flow geometry was originally
considered for the case of no-slip boundary conditions by Nye 1965). Hence we only
need to consider the problem of determining the downstream velocity u in a cross-
section Ω of the glacier, which we assume to be a bounded, open and connected subset
of the (x, z)-plane with Lipschitz continuous boundary ∂Ω (so that the divergence
theorem and Poincaré’s inequality apply). Note that these assumptions imply that
there are no longitudinal stresses assoicated with velocity variations in the axial (y-)
direction. For a real glacier, the suppression of the y-coordinate can be justified if the
cross-sectional shape, thickness and bed properties of the glacier change with y only
over distances that are large compared with the thickness of the ice.

Assuming that ice can be modelled as an incompressible power-law fluid with
exponent n > 0 (Paterson 1994, chap. 5) flowing at zero Reynolds number, the only
non-trivial component of the Stokes equations for the velocity field in the ice is

−∇ ·
(
a|∇u|1/n−1∇u

)
= f on Ω, (2.1)

where ∇ = (∂/∂x, ∂/∂z), a > 0 is a generalized viscosity and f = ρg sin α > 0 is the
downslope component of gravity, with ρ denoting ice density, g acceleration due to
gravity and α the angle of inclination of the glacier. Usually, f can be idealized as
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a positive constant. Our theory can, however, also accommodate spatial variations in
the gravitational body force due to variations in density. The rheological coefficient
a, which we assume to be known, can also vary with position as a result of variations
in temperature or in water and impurity content of the ice.

We divide the boundary ∂Ω into two parts, the upper surface Γ0 which is horizontal
and in contact with the atmosphere, and a part Γ which is in contact with the
glacier bed. A trivial alteration of the theory also allows us to consider the case of an
additional vertical part Γp of the boundary along which periodic boundary conditions
apply, as indicated by figure 1; this is more relevant to a periodically repeated pattern
of ice streams than to a confined valley glacier.

Γ0 is stress-free, so

−a|∇u|1/n−1un = 0 on Γ0, (2.2)

where un denotes the outward-pointing normal derivative to the boundary. At the
bed Γ , we assume that yielding in the till or at the ice–till interface, and hence sliding,
will occur when shear stress attains a yield stress τc, while there is no sliding below
that yield stress. Allowing for now the possibility that ice could slide uphill if basal
shear stress were sufficiently negative, we have

−a|∇u|1/n−1un = τc if u > 0,

−τc � −a|∇u|1/n−1un � τc if u = 0,

−a|∇u|1/n−1un = −τc if u < 0.


 (2.3)

Crucially, the parts of Γ on which the three different cases in (2.3) hold are not known
a priori, but must be found as part of the solution. Naturally, we expect that uphill
sliding cannot occur for a positive body force f , and we shall later show that this is
indeed true. The last condition in (2.3) then becomes immaterial and we recover the
boundary conditions used in Schoof (2004b).

In general, the yield stress τc will depend on the difference between confining
pressure (which is hydrostatic) and porefluid pressure in the underlying till, as well as
the local properties of the till, such as grain size distribution. Owing to the absence
of deviatoric normal stresses in our flow geometry, τc is independent of the velocity
field u. In the analysis that follows, we assume consequently that τc � 0 is a known
sufficiently smooth function of position along Γ .

3. Weak formulation
Frictional boundary conditions are ubiquitous in elasticity, but appear not to have

been used much in fluid mechanical problems. In this section, we use an analogy
with the elastic case (e.g. Duvaut & Lions 1976) to re-cast the problem (2.1)–(2.3)
in variational form. This allows us to employ abstract methods of convex analysis
(Ekeland & Temam 1976) to study various qualitative attributes of the glacier flow
problem – such as whether it has solutions at all, which turns out to be the case
only under appropriate conditions on basal yield stress τc and driving force f .
Moreover, our variational approach leads straightforwardly to a numerical algorithm
for solving the flow problem based on the minimization of an appropriate functional,
which replaces the ad hoc method employed by Truffer et al. (2001). The theoretical
work below is at times somewhat abstract; nevertheless, we hope that some of the
subtleties involved will become apparent to those readers unfamiliar with modern
variational methods. However, the reader interested only in the glaciological results
can fast-forward to § 4, where we present our numerical calculations.
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Suppose a and u are sufficiently smooth to apply the divergence theorem, and
consider any v ∈ C2(Ω) ∩ C1(Ω). Multiplying (2.1) by v − u and integrating over Ω

yields, on application of the divergence theorem,∫
Ω

f (v − u) =

∫
Ω

a|∇u|1/n−1∇u · ∇(v − u) −
∫

∂Ω

a|∇u|1/n−1un(v − u). (3.1)

Rearranging and using the boundary conditions (2.2) and (2.3) leads to

0 =

∫
Ω

a|∇u|1/n−1∇u · ∇(v−u)−
∫

Ω

f (v−u)+

∫
Γf

τcsgn (u)(v−u)+

∫
Γr

(
−a|∇u|1/n−1un

)
v,

(3.2)

where Γf and Γr denote the parts of Γ on which |u| > 0 and u = 0, respectively. Noting
from (2.3) that −a|∇u|1/n−1unv � τc|v| = τc(|v|−|u|) on Γr , and that τcsgn (u)(v −u) �
τc(|v| − |u|) because τc � 0, we find that u must satisfy the variational inequality

0 �

∫
Ω

a|∇u|1/n−1∇u · ∇(v − u) +

∫
Γ

τc(|v| − |u|) −
∫

Ω

f (v − u) (3.3)

for all admissible v. The practical advantage of considering an inequality of this type
rather than the original boundary-value problem (2.1)–(2.3) is that (3.3) no longer
contains any explicit reference to the different parts Γr and Γf of the bed; when
solving (3.3) we no longer have to deal directly with the fact that Γf and Γr are not
known from the outset. This is particularly convenient when dealing with the problem
numerically.

The variational inequality (3.3) naturally leads to a so-called weak formulation
of the boundary-value problem (2.1)–(2.3). Following standard procedure (e.g. Evans
1998), we relax our smoothness assumptions on u, and allow functions which do not
have the requisite smoothness to satisfy (2.1)–(2.3) pointwise but which satisfy the
variational inequality (3.3) to be considered as generalized or weak solutions of the
glacier flow problem. The rationale behind this step is twofold. First, any classical
solution of the original boundary-value problem is also a solution of the variational
inequality (3.3), and by considering weak solutions we therefore also capture the
behaviour of classical solutions, provided they do exist. Secondly, considering a wider
class of admissible solutions greatly simplifies the analysis of the problem (notably by
ensuring that the function spaces used have a suitable topology) while still ensuring
that essential physical properties of solutions (such as conservation of energy, see
§ 3.3) are preserved. We do not, however, address the problem of the regularity (or
smoothness) of solutions, and specifically, we do not attempt to derive conditions
which ensure that weak solutions also satisfy the original boundary-value problem
pointwise. In the same vein, we do not discuss the nature of stress singularities which
may occur at the bed; more details on these for the case of constant viscosity (n = 1)
may be found in Schoof (2004b).

Let p = 1 + 1/n and let W 1,p(Ω) be the usual Sobolev space endowed with the
norm

‖v‖ =

(∫
Ω

|v|p +

∫
Ω

|∇v|p
)1/p

. (3.4)

We consider any u ∈ W 1,p(Ω) to be a weak solution of the boundary-value
problem (2.1)–(2.3) if it satisfies the variational inequality (3.3) for all v ∈ W 1,p(Ω).
Furthermore, we suppose that a ∈ L∞(Ω) with a >a0 > 0 almost everywhere in Ω ,
where a0 is a constant, while f ∈ Lp∗

(Ω), f > 0 almost everywhere, and τc ∈ Lp∗
(Γ ),

τc � 0 almost everywhere, where p∗ = p/(p − 1).
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Recognizing the (monotone) operator A : W 1,p(Ω) �→ W 1,p(Ω)∗ defined by

〈Au, v〉 =

∫
Ω

a|∇u|p−2∇u · ∇v (3.5)

as the Gâteaux derivative of the convex functional p−1
∫

Ω
a|∇u|p (Evans 1998, pp. 451–

452), standard methods in convex analysis (e.g. Ekeland & Temam 1976, chap. 2)
show that (3.3) is equivalent to finding a minimizer u ∈ W 1,p(Ω) of the functional J

defined by

J (v) =
1

p

∫
Ω

a|∇v|p +

∫
Γ

τc|v| −
∫

Ω

f v. (3.6)

3.1. Non-existence, existence and uniqueness of solutions

We anticipate on physical grounds that there cannot be a solution of the original
boundary-value problem (2.1)–(2.3) if the total gravitational driving force

∫
Ω

f is

greater than the maximum friction force
∫

Γ
τc which the bed is able to exert. This

is also true of the weak formulation of the problem: if u is a solution, then putting
v = u + C in (3.3), where C is a positive constant, shows that the force balance
constraint

0 �

∫
Γ

τc|u + C| −
∫

Γ

τc|u| −
∫

Ω

f C � C

(∫
Γ

τc −
∫

Ω

f

)
, (3.7)

must be satisfied. Hence we have the solvability condition∫
Γ

τc −
∫

Ω

f � 0. (3.8)

A solvability condition of this type obviously has implications for the applicability
of the model; if the bed is too weak, in the sense that (3.8) is not satisfied, then
longitudinal stresses, corresponding to variations in u with the downstream coordinate
y, must contribute to ensuring force balance, and the model used here must be
amended to take account of these stresses.

We now turn to the question of the existence of solutions to (3.3) when (3.8) is
satisfied, for which convex analysis (Ekeland & Temam 1976) provides the appropriate
tools. The marginal case

∫
Γ

τc −
∫

Ω
f = 0, in which sliding occurs everywhere on Γ ,

was treated by Pélissier & Reynaud (1974). The problem then becomes a nonlinear
Neumann boundary-value problem with a non-unique solution (more precisely, a
solution u exists provided τc is sufficiently smooth, and u is unique only up to
an additive constant) and, as a consequence, the ice flux carried by the glacier is
indeterminate unless we amend the model to take account of stress variations in the
suppressed y-direction.

Below, we will be concerned exclusively with the physically more relevant case
in which the strong inequality in (3.8) holds. The existence of a solution can then
be proved using a number of abstract results, for instance those in Hess (1974),
Gastaldi & Tomarelli (1987), or Shi & Shillor (1991) for the case of constant viscosity
(n = 1). Here we take a more direct approach (most closely allied to that of Hess)
and prove that there exists a positive number R0 such that J (v) > J (0) = 0 whenever
‖v‖ >R0 (roughly speaking, this ensures that J ( · ) cannot be minimized ‘at infinity’
in W 1,p(Ω), see also Duvaut & Lions 1976; Kikuchi & Oden 1988). Any u which
minimizes J ( · ) over the closed, convex and bounded set {v ∈ W 1,p(Ω) : ‖v‖ � R0}
therefore minimizes J ( · ) over the whole of W 1,p(Ω) and is a solution of (3.3).
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Since W 1,p(Ω) is reflexive and the functional J ( · ) is convex, proper and lower
semi-continuous, such a solution u must exist (Ekeland & Temam 1976, chap. 2).

Take any v ∈ W 1,p(Ω), define its mean by v̄ = (meas Ω)−1
∫

Ω
v and put ṽ = v − v̄.

This allows us to apply Poincaré’s inequality (Evans 1998, p. 275) to
∫

Ω
|∇v|p =∫

Ω
|∇ṽ|p . Specifically, we find

J (v) �
a0

p

∫
Ω

|∇v|p +

∫
Γ

τc|v| −
∫

Ω

f v

� C1 ‖ṽ‖p
+ |v̄|

(∫
Γ

τc −
∫

Ω

f

)
−

∫
Γ

τc|ṽ| −
∫

Ω

f ṽ

� C1 ‖ṽ‖p
+ |v̄|

(∫
Γ

τc −
∫

Ω

f

)
−

(
C2 ‖τc‖Lp∗

(Γ ) + ‖f ‖Lp∗
(Ω)

)
‖ṽ‖ , (3.9)

where C1 > 0 is a constant which depends only on a0, p and Ω , while C2 is the norm
of the trace operator from W 1,p(Ω) into Lp(Γ ).

The last line of (3.9) takes the form

J (v) � α
[
‖ṽ‖ (‖ṽ‖p−1 − β) + γ ‖v̄‖

]
, (3.10)

with α, β and γ positive on account of the assumed strict inequality in (3.8). By
writing R = ‖ṽ‖ + ‖v̄‖ and minimizing the right-hand side of (3.9) over ‖ṽ‖ while
keeping R constant, it is straightforward to show that the right-hand side of (3.10) is
positive when

‖ṽ‖ + ‖v̄‖ > R0 =
p − 1

γ

[
β + γ

p

]p/(p−1)

, (3.11)

and is consequently positive when ‖v‖ > R0. The existence of a solution u with
‖u‖ � R0 follows. Notice also that, since γ = (

∫
Γ

τc −
∫

Ω
f )/(C1meas(Ω)1/p), R0 tends

to infinity and the bound on ‖u‖ becomes increasingly poor as equality is approached
in (3.8).

Proving the uniqueness of weak solutions u is facilitated by first showing that u � 0
almost everywhere. Indeed, inserting v = max(u, 0) ∈ W 1,p(Ω) into (3.3) yields

−
∫

Ω−
a|∇u|p −

∫
Γ −

τc|u| +

∫
Ω−

f u � 0, (3.12)

where Ω− = {(x, y) ∈ Ω : u(x, y) < 0} and similarly Γ − = {(x, y) ∈ Γ : u(x, y) < 0
in the trace sense}. Clearly, each term on the left-hand side is non-positive since
a > 0, τc � 0, f > 0 almost everywhere, and moreover the inequality can only hold
if u � 0 almost everywhere in Ω .

Suppose then that u1 and u2 are distinct solutions. Putting v = u2, u = u1 and vice
versa into (3.3) and adding the resulting inequalities yields∫

Ω

a(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · (∇u1 − ∇u2) � 0. (3.13)

However, the left-hand side of (3.13) is strictly positive unless ∇(u1 − u2) = 0 almost
everywhere (which incidentally confirms the monotonicity of the operator A, and
hence the convexity of J (·)). From this it follows that u1 = u2 +C almost everywhere,
where C is a constant which we may assume to be positive without loss of generality.
Putting v = u2, u = u1 in (3.3) and using the fact that u1 and u2 must both be positive,
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we obtain

C

(∫
Ω

f −
∫

Γ

τc

)
=

∫
Γ

τc(|u2| − |u1|) −
∫

Ω

f (u2 − u1) � 0, (3.14)

which contradicts (3.8) with strict inequality unless C = 0. Therefore the solution is
unique. (We note in passing that uniqueness is assured relatively easily here because
the flow direction of the glacier is straightforward to deduce, with u � 0; this is not
the case for the more general case of an ice sheet which is not confined to flow down
a channel, as discussed in Schoof 2006)

3.2. Continuous dependence on data

In this section, we consider the stability of solutions to (3.3) with respect to
perturbations in the data functions a, f and τc, that is, we seek to establish whether
the velocity field u changes continuously (in an appropriate sense) with changes in
a, f and τc. Perturbations in f and τc are of particular practical concern as driving
force and yield stress are likely to vary, albeit slowly, along a real glacier channel,
and are also likely to evolve in time as a result of changes in subglacial drainage
(which affects the yield stress τc through changes in porewater pressure in the till)
and in glacier surface slope (which changes the downslope component of gravity f

as discussed in § 4). It is therefore relevant to ask whether small changes in f and τc

necessarily correspond to small changes in the velocity field u, or whether they could
lead to abrupt changes in flow behaviour.

Suppose that for all v ∈ W 1,p(Ω), u1 and u2 satisfy∫
Ω

a1|∇u1|p−2∇u1 · ∇(v − u1) +

∫
Γ

τ1(|v| − |u1|) −
∫

Ω

f1(v − u1) � 0, (3.15)

∫
Ω

a2|∇u2|p−2∇u2 · ∇(v − u2) +

∫
Γ

τ2(|v| − |u2|) −
∫

Ω

f2(v − u2) � 0. (3.16)

Assume further that τ1, τ2, f1 and f2 are such that
∫

Γ
τi −

∫
Ω

fi is bounded below by
some fixed δ > 0 for i = 1, 2 as a1 − a2, τ1 − τ2 and f1 − f2 tend to zero in norm. In
that case, our derivation of the bound R0 for solutions of (3.3) shows that ‖u1‖ and
‖u2‖ are bounded above uniformly by some Rδ . Putting v = u2 in (3.15), v = u1 in
(3.16) and adding, we obtain after some manipulation that∫

Ω

a1(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · (∇u1 − ∇u2)

�

∫
Γ

(τ2 − τ1)(|u1| − |u2|) +

∫
Ω

(f2 − f1)(u2 − u1)

+

∫
Ω

(a2 − a1)|∇u2|p−2∇u2 · (∇u2 − ∇u1)

� 2C2 ‖τ2 − τ1‖Lp∗
(Γ ) Rδ

+ 2 ‖f2 − f1‖Lp∗
(Ω) Rδ + 2 ‖a2 − a1‖L∞(Ω) R

p
δ

.
= ∆, (3.17)

where C2 is the norm of the trace operator as before. Using standard stability estimates
for the p-Laplacian (e.g. Fernandez Bonder & Rossi 2001), we can manipulate the
left-hand side of (3.17) to bound ‖∇u2 − ∇u1‖Lp(Ω). As ice is generally taken to be
a shear-thinning material with n ≈ 3, we consider only the case n � 1 and hence
1 <p � 2. With p in that range, we have the following inequality, with Cp � (p − 1)
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a positive constant which depends only on p:

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · (∇u1 − ∇u2) �
Cp|∇u1 − ∇u2|2

(|∇u1| + |∇u2|)2−p
, (3.18)

which holds for any two vectors ∇u1 and ∇u2. Using Hölder’s inequality,

a0

∫
Ω

|∇u1 − ∇u2|p �

∫
Ω

a1|∇u1 − ∇u2|p

�

(∫
Ω

a1

|∇u1 − ∇u2|2
(|∇u1| + |∇u2|)(2−p)

)p/2 (∫
Ω

a1(|∇u1| + |∇u2|)p
)(2−p)/2

,

and combining this with (3.18) and (3.17),

Cp/2
p a0 ‖∇u1 − ∇u2‖p

Lp(Ω) �
[
‖a1‖L∞(Ω) 2

pR
p
δ

](2−p)/2
∆p/2, (3.19)

where ∆ is defined on the last line of (3.17). Hence ∇u is Hölder continuous with
respect to perturbations in the data functions.

A stability estimate for u rather than ∇u can also be derived on this basis. Putting
w = u1 − u2 and splitting w into w̄ = (meas Ω)−1

∫
Ω

w, w̃ = w − w̄ as before,
Poincaré’s inequality and (3.19) immediately provide a stability estimate for w̃, and it
only remains to consider the behaviour of w̄ as perturbations in the data functions
tend to zero.

Putting v = u2 in (3.15) and using the fact that u1 and u2 are positive, we find

−
∫

Ω

a1|∇u1|p−2∇u1 · ∇w̃ −
∫

Γ

τ1w̃ +

∫
Ω

f1w̃ � w̄

(∫
Γ

τ1 −
∫

Ω

f1

)
. (3.20)

Using Hölder’s inequality,

w̄ �
1

δ

[
‖a1‖L∞(Ω) R

p−1
δ ‖∇w̃‖Lp(Ω) +

(
C2 ‖τ1‖Lp∗

(Γ ) + ‖f1‖Lp∗
(Ω)

)
‖w̃‖Lp(Ω)

]
. (3.21)

Reversing the roles of u1 and u2, we also obtain

w̄ � −1

δ

[
‖a2‖L∞(Ω) R

p−1
δ ‖∇w̃‖Lp(Ω) +

(
C2 ‖τ2‖Lp∗

(Γ ) + ‖f2‖Lp∗
(Ω)

)
‖w̃‖Lp(Ω)

]
, (3.22)

and combining the last two inequalities, we see that w̄ tends to zero at least at the
same rate as w̃ when perturbations in the data functions tend to zero.

Consequently, small perturbations in the data functions correspond to small
perturbations in the velocity field, provided that the marginal force balance case∫

Γ
τc −

∫
Ω

f = 0 is not approached. An obvious drawback of the stability estimates
above is that they depend on the parameter δ, which measures how far we are from
the marginal force balance case. Specifically, the stability estimates above become
increasingly less restrictive when δ → 0+, Rδ ∼ δ−1 → ∞. This suggests that, as the
marginal case

∫
Γ

τc −
∫

Ω
f = 0 is approached, solutions could become increasingly

badly behaved. In practice, this appears not to be the case, at least for the very
regular data functions and domains which we have considered numerically. (It is
worth pointing out, however, that the possible ‘bad’ behaviour of solutions close
to the marginal force balance case is not purely related to the non-uniqueness of
Pélissier & Reynaud’s (1974) solution, as not only ‖w̄‖ can apparently become large –
as would be expected from solutions differing by a constant – but also ‖w̃‖).
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3.3. Some qualitative remarks

(i) Conservation of energy. By putting v = 0 and v = 2u in (3.3), we can show that∫
Ω

a|∇u|p +

∫
Γ

τc|u| =

∫
Ω

f u (3.23)

at a solution u, which expresses the fact that the rate at which work is done on the
glacier by gravity (given by the integral on the right-hand side) is equal to the rate
at which heat is generated by shearing in the ice and by friction at the bed (the first
and second integrals on the left-hand side, respectively).

(ii) Monotonicity of ice flux with respect to gravitational driving force. This result
is of importance as it shows that the glacier sliding model studied here does not lead
to a multivalued relationship between driving force and ice discharge of the type first
employed by Fowler (1987a,b) to explain glacier surges. To obtain such a relationship,
some kind of hydraulic switch which affects τc is likely to be necessary, as in Fowler’s
papers.

Suppose that u1 and u2 satisfy (3.15) and (3.16) with a1 = a2 = a, τ1 = τ2 = τc, and
that f1 and f2 are constants such that f2 >f1 and the solvability condition (3.8) is
satisfied with strong inequality. From the conservation of energy argument above, we
then have∫

Ω

a|∇u1|p +

∫
Γ

τc|u1| −
∫

Ω

f1u1 =

∫
a|∇u2|p +

∫
Γ

τc|u2| −
∫

Ω

f2u2 = 0, (3.24)

and it is straightforward to see that we cannot have u1 ≡ u2 unless u1 ≡ u2 ≡ 0, a
case which we discount as f1 and f2 are positive. Define J1 and J2 by

Ji(v) =
1

p

∫
Ω

a|∇v|p +

∫
Γ

τc|v| −
∫

Ω

fiv (i = 1, 2). (3.25)

Then, since u1 uniquely minimizes J1 and u2 uniquely minimizes J2, it follows that
J1(u1) < J1(u2) and J2(u2) < J2(u1). Adding these inequalities, we find

(f1 − f2)

∫
Ω

(u1 − u2) > 0, (3.26)

i.e. ice flux
∫

Ω
u is a strictly increasing function of body force f , as may be expected

intuitively. On physical grounds, we also expect that
∫

Ω
u2 �

∫
Ω

u1 if τ2 � τ1 and
a2 � a1 almost everywhere, as these inequalities signify that the bed is weaker and
the ice is softer in problem (3.15) than in (3.16). However, monotonicity of flux
with respect to changes in yield stress and viscosity is much more difficult to prove
mathematically because it does not follow straightforwardly from the variational
formulation of the problem.

3.4. Numerical method

The simplest way of solving the problem (3.3) numerically is to look for a minimizer
of the functional (3.6). Since a solution u must be non-negative almost everywhere,
we can restrict the class of admissible functions v to be K = {v ∈ W 1,p(Ω) : v �
0 on Γ in the trace sense}, and the minimization problem (3.6) becomes

min
v∈K

J̃ (v) : J̃ (v) =

[
1

p

∫
Ω

a|∇v|p +

∫
Γ

τcv −
∫

Ω

f v

]
, (3.27)

which is the variational form of the Signorini-type boundary-value problem considered
(with p = 2) in Schoof (2004b). The use of this constrained minimization problem
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Figure 2. (a) A three-dimensional view of the problem, with parts of the bed below the water

table height shaded in grey. (b) The scaled domain Ω̂ . θ is the angle between the sloping
glacier sides and the horizontal, where 0 < θ < π/2.

has the advantage of avoiding the non-differentiability of the friction functional∫
Γ

τc|v|, while inequality constraints need only be imposed at the boundary (one could
equally have considered the admissible class of non-negative v, but this would be
computationally much less efficient). The problem is then discretized using piecewise
linear finite elements; a discussion of the convergence of the approximate solution to
u for the Newtonian case p = 2 may be found in Van Bon (1988). The resulting finite
dimensional minimization problem is fairly straightforward to solve using a projected
block relaxation method (Glowinski 1984, § 5.3), with individual minimizations being
carried using the Polak–Ribière conjugate gradient algorithm. In the general, nonlinear
case, a stopping criterion based on (3.23) was used.

4. Results
In this section, we will mostly be interested in the effect of till failure on the

discharge Q =
∫

Ω
u of a valley glacier, as Q ultimately determines through mass

conservation how the profile of the glacier in the downstream (y-) direction changes
over time. Implicit here is, of course, that ice thickness and ice flux can change with
y, which may appear to be at variance with the assumptions underlying our model.
Naturally, we are assuming that variations in ice thickness and ice flux occur over
length scales which are large compared with ice thickness and channel width, so
that our uniaxial channel flow assumption is justified in the same way as the usual
lubrication approximation for glacier flow (Fowler & Larson 1978).

Following Reynaud (1973) and Pélissier & Reynaud (1974), we suppose that the
bed has a constant friction coefficient µ and no cohesiveness, so that the yield stress
τc takes the form

τc = µ(pi − pw), (4.1)

where pi is ice overburden pressure and pw is porewater pressure. We assume further
that z = 0 and z = H denote the lowest point on the bed and the upper surface
of the glacier, respectively (figure 2). Suppose that the water pressure pw depends
linearly on depth below a water table elevation z = Hw in such a way that a hydraulic
gradient only exists on the downstream (y-) direction (Reynaud 1973; Pélissier &
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Reynaud 1974). Then, taking account of the finite inclination of the glacier (see fig-
ure 2) we have pw = ρwg(Hw − z) cos α for z <Hw , pw = 0 for z � Hw , where ρw is
the density of water. Meanwhile, our uniaxial channel flow assumption reduces the
ice overburden pressure to pi = ρg(H − z) cos α, and

τc =

{
µρg cos α (H − z) (z � Hw),

µ cos α [ρg(H − z) − ρwg(Hw − z)] (z < Hw).
(4.2)

In a real glacier, Hw is likely to be determined by a channelized subglacial drainage
system. Assuming that a subglacial channel exists at the lowest point of the bed, the
effective pressure in the channel is N = ρgH − ρwgHw , and the simplest subglacial
drainage models (e.g. Röthlisberger 1972) calculate N , and hence Hw , as a function
of water flux in the channel. We exclude cases in which ρwHw >ρH , N < 0 from
consideration, as these correspond to water pressure at the lowest point of the bed
above ice overburden and therefore to partial flotation of the glacier. While such high
water pressures do occur in practice, they are by necessity short-lived as incipient
flotation of the ice will usually open up subglacial channels and allow water to drain
out. In a pseudo-steady drainage model, in which water pressure is hydrostatic above
the base of the glacier, we therefore expect ρwHw � ρH (see also Röthlisberger 1972).

Below, we consider only the effects of changing H , Hw and α on the discharge
of the glacier, as these reflect changes in glacier geometry and subglacial drainage
which occur as a glacier evolves in time. For a real glacier, we ought to distinguish
between the angle of inclination of the glacier channel and the glacier surface slope.
The former will usually be fixed for a given glacier, while the latter can evolve over
time. Our channel flow assumption strictly speaking requires both to be equal, but
still provides a good approximation so long as the difference between the two angles
is small compared with unity, angles being measured in radians (this is the basis of
the usual lubrication approximation for glacier flow, see Fowler & Larson 1978). In
that case, α must be identified with the surface slope, which explains why we can
consider α to be a variable parameter for a given glacier.

To simplify matters further, we treat the model parameters a, n, µ, ρ and ρw as
fixed constants. Moreover, we restrict ourselves to triangular glacier cross-sections as
indicated in figure 2. Although glacier valleys often have a ‘u-shaped’ cross-section,
approximately triangular cross-sections are sometimes realized in practice, as figure 2
of Lliboutry & Reynaud (1981) shows. Assuming a channel with triangular cross-
section here has the advantage of yielding a domain Ω whose shape is independent
of ice thickness H (specifically, the scaled domain Ω̂ below is independent of ice
thickness H ), which in turn reduces the number of independent parameters in the
problem and allows our results to be visualized more easily. To exploit this fact, we
scale the model by putting

(x̂, ẑ) =
(x, z)

H
, û =

an

(ρg sin α)nHn+1
u, τ̂ c =

1

ρgH sin α
τc,

Q̂ =
an

(ρg sin α)nHn+3
Q,


 (4.3)

and defining the parameters

r =
ρ

ρw

, N̂ =
ρgH − ρwgHw

ρgH
=

N

ρgH
, f̂ =

tan α

µ
. (4.4)
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N̂ is a scaled effective pressure at the lowest point of the bed, while f̂ a scaled body
force. Our requirement that flotation should not take place becomes N̂ � 0. τ̂ c takes
the form

τ̂ c =

{
f̂ −1(1 − ẑ) (ẑ � r(1 − N̂ )),

f̂ −1(N̂ + (r−1 − 1)ẑ) (ẑ < r(1 − N̂ )).
(4.5)

Note that we have chosen the scales in (4.3) so that the scaled driving force f̂ appears
as a coefficient in τ̂ c rather than as a body force, as equation (4.7) below shows. The
rationale behind this is that we are less interested in the effect of the body force
f = ρg sin α on deformation in the ice than in its effect on sliding. By choosing our
scales such that f̂ appears as a coefficient in the definition of τ̂ c, we have ensured
that the scaled discharge Q̂ is constant for a given glacier cross-section when there is
no sliding, regardless of the value of f̂ . Naturally, when the scaled quantities defined
above are converted back to their unscaled equivalents, we find that

Q ∝ f nHn+3Q̂, (4.6)

the constant of proportionality being independent of H , Hw and α. Hence, Q does
increase with f as Q ∝ f n even if the scaled flux Q̂ remains constant, as is the
case when there is no sliding. Removing this dependence on f in the scaled variables
ensures that our numerical solutions for different values of f̂ are easier to compare
when displayed graphically.

Given the non-dimensionalization above, the scaled version of the minimization
problem (3.6) is to find a minimizer û ∈ W 1,p(Ω̂) of the functional Ĵ defined by

Ĵ (v̂) =

∫
Ω̂

|∇̂v̂|p +

∫
Γ̂

τ̂ c|v̂| −
∫

Ω̂

v̂, (4.7)

where ∇̂ = (∂/∂x̂, ∂/∂ẑ), and Ω̂ and Γ̂ are the obvious scaled versions of Ω and
Γ . Importantly, Ω̂ and Γ̂ are independent of H and depend only on the angle of
inclination θ of the glacier sides (figure 2). The scaled discharge Q̂ =

∫
Ω̂

û therefore

depends only on the parameters f̂ , N̂ , r , p and θ , and on the scaled domain Ω̂ .
Of these, only f̂ and N̂ depend on ice thickness H , water-table height Hw and
the surface slope α (although this holds true only for triangular cross-sections; for
more general channel shapes the scaled domain Ω̂ and boundary Γ̂ do depend on H ).
Consequently, for a given cross-sectional geometry defined by θ , we consider discharge
Q̂ = Q̂(f̂ , N̂ ) as a function of scaled effective pressure N̂ and body force f̂ , while we
treat r and p as constants, with numerical values r = 0.9 (based on ρ = 900 kg m−3,
ρw = 1000 kg m−3) and p = 4/3 (based on the widely used value n = 3 in Glen’s law
for the rheology of ice, see Paterson 1994, chapter 5).

4.1. Numerical results

Figure 3 shows plots of discharge Q̂ versus effective pressure N̂ at various values
of the body force f̂ for three different channel shapes, with θ = π/8, π/4 and π/3.
The values used for f̂ are motivated by realistic glacier geometries and till friction
coefficients. With µ = 1, the values f̂ = 0.08745, 0.1763 and 0.3640 correspond to
surface slopes α = 5◦, 10◦ and 20◦, respectively. µ = 1 is somewhat large compared
with experimentally determined friction coefficients: Iverson et al. (1998) give µ = 0.5

for till from a Swedish mountain glacier, in which case the values of f̂ above
correspond to surface slopes α = 2.4◦, 5◦ and 10.3◦, respectively. A noteworthy point,
however, is that the ring-shear tests typically employed to measure friction coefficients
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Figure 3. Discharge Q̂ against effective pressure N̂ for channels with (a) θ = π/8, (b) θ = π/4

and (c) θ = π/3. In each plot, the solid line corresponds to f̂ = 0.08745, the dashed line

to f̂ = 0.1763, and the dot-dashed line to f̂ = 0.3640. A solid circle signifies the value of

N̂ = N̂c corresponding to equality in the force-balance constraint (3.8). At that value of N̂ ,
the boundary-value problem (2.1) can be re-cast as a Neumann boundary-value problem with

−a|∇u|1/n−1un = τc on Γ , u � 0 on Γ replacing (2.3). The Q̂-coordinate of each solid circle

corresponds to the smallest solution u of that boundary-value problem; any larger value of Q̂

is also attainable at the same value of N̂ . For smaller values of N̂ , (3.8) is violated.

for subglacial sediment require the removal of larger rock fragments prior to testing
and may consequently underestimate µ.

The most obvious feature of figure 3 is that, for sufficiently steep and wide glaciers
(sufficiently large f̂ and small θ), effective pressure N̂ cannot be lowered below a
critical value N̂c without violating the force balance constraint (3.8). In fact, a simple
calculation reveals that the dimensionless equivalent of (3.8) can be written as∫

Γ̂

τ̂ c −
∫

Ω̂

1 = (1 − r(1 − N̂ )2)f̂ −1cosec θ − cot θ � 0, (4.8)

and hence that force balance requires

N̂ � N̂c = 1 −
√

r−1(1 − f̂ cos θ). (4.9)

Note that N̂c increases with f̂ and decreases with θ as indicated above. The reason
for this dependence is obvious: force balance depends on having a maximum friction
force larger than or equal to the total driving force, which is more likely to be realized
at low effective pressures when the ratio of bed circumference to cross-sectional area
is large (i.e. when θ is close to π/2) and when the glacier surface slope is small
(i.e. when f̂ is small). If we recall that negative N̂ corresponds to incipient flotation
of the glacier, which we exclude from consideration, then it is clear that the constraint
(4.9) is only relevant if N̂c is positive. This is the case provided f̂ cos θ > 1 − r . For
sufficiently low-angled glaciers, it is therefore possible that no positive N̂ leads to force
balance violation. Regardless of the channel side inclination θ , this always happens
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Figure 4. Contours of velocity û for a channel with θ = π/8 (plotted with true aspect ratios;
only half the channel is plotted in each case because of the obvious symmetry). Thick lines
at the bed indicate regions of sliding, the dashed horizontal line the water-table elevation.
Contour interval is 0.02, with contour elevation increasing from left to right; only the highest

contour is labelled. (a)–(c) f̂ = 0.1763, with effective pressure decreasing: (a) N̂ = 0.1,

(b) N̂ = 0.06 and (c) N̂ = N̂c = 0.03558. (d) The critical force balance case for f̂ = 0.3649,

N̂ = N̂c = 0.1412. Comparison of (c) and (d) shows that vertical shearing in the centre of the
channel is stronger in (d) which explains the lower ice velocities.

when f̂ < 1 − r = 0.1, which clearly favours the formation of low-angled till-bedded
glaciers, for which f̂ is small and force balance violation is unlikely to occur.

In cases where N̂c is positive, our numerical results show that as N̂ approaches N̂c

from above, discharge Q̂ remains bounded. In fact, figure 3(a) suggests that Q̂ may
even have a bounded derivative with respect to N̂ for all N̂ > N̂c, though our stability
estimates in § 3.2 are too crude to justify either of these statement theoretically.

For N̂ larger than the critical value N̂ c, we find that the dimensionless flux Q̂ is
generally an increasing function of the scaled body force f̂ and a decreasing function
of scaled effective pressure N̂ . These dependences are, however, not strict. In all cases
considered, Q̂ is independent of N̂ for N̂ sufficiently large and f̂ sufficiently small.
This corresponds to the case in which effective pressures are high enough to prevent
sliding below the water table (sliding above the water table as shown in figure 5(a)
is unaffected by changing N̂ , so long as there is no sliding below the water table).
As N̂ is lowered, Q̂ then in most cases begins to increase as a result of sliding below
the water table elevation. The range of values of N̂ for which sliding below the water
table happens, and the concomitant increase in Q̂, is considerably larger for wider
channels than narrower ones, as comparison of figures 3(a) and 3(c) shows. The more
significant increase in discharge caused by sliding in wider glaciers can be understood
easily by reference to figure 4; in a wide glacier, the relevant length scale over which
shearing in the ice occurs at low values of N̂ is the width of the glacier rather than
the ice thickness, and this allows higher velocities and hence higher ice discharges to
be attained than for narrow glaciers.

The increase in Q̂ due to sliding before force balance violation also tends to be

larger for smaller f̂ , for a given glacier cross-section. To understand this, note that
f̂ appears as a coefficient in the prescription of τ̂ c in (4.5), where it controls the rate
at which yield stress increases as ẑ increases between the lowest point of the channel

(ẑ = 0) and the water table elevation (ẑ = r(1 − N̂ )). For small f̂ , that increase in τ̂ c

is larger than for large f̂ , making the lowest parts of the bed relatively weaker than
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Figure 5. As figure 4, but with θ = π/4 and a contour interval of 0.001. (a)–(c) f̂ = 0.364,

with (a) N̂ = 0.2, (b) N̂ = 0.107 and (c) N̂ = N̂c = 0.09164. (d) The case f̂ = 0.08745 with

zero effective pressure N̂ = 0 at the lowest point of the bed – note the different deformation

patterns for high and low f̂ , with sliding above the water table evident in (a–c).

those parts of the bed close to the water table height. As a result, for small f̂ and
N̂ close to its critical value, lateral shearing contributes more to force balance in the
central parts of the glacier than vertical shearing compared with the case of larger f̂

(compare figures 4(c) and 4(d)). As a result of this increased lateral shearing, scaled
ice velocities û in the middle of the glacier and hence scaled discharge Q̂ tend to be
higher for lower f̂ when N̂ is close to its critical value. Of course, this only applies to
scaled velocities and fluxes (and hence to the structure of the velocity field rather than
to absolute velocities): larger dimensional f still corresponds to larger dimensional
Q as marginal force balance is approached.

As figures 4, 5 and 6 show, the location of the parts of the bed which are
and are not failing is controlled in a non-trivial way by effective pressure, driving
stress and channel geometry. For high values of f̂ and a sufficiently steep-sided
channel geometry, there can be sliding (or till failure) at the highest parts of the bed
regardless of effective pressure N̂ (e.g. figure 5(a)). This results from the fact that
effective pressures there are low as a results of the small ice overburden there (with
τ̂ c = 0 at the glacier surface) while, at least for narrow channel geometries, relatively
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Figure 6. As figure 4, but with θ = π/3 and a contour interval of 0.0002. (a, b) f̂ = 0.1763,

with (a) N̂ = 0.0125 and (b) N̂ = 0, while (c) has f̂ = 0.3640 and N̂ = N̂c = 0.04663. Note

that the high f̂ case (c) has zero velocity only at the lowest point of the bed, with sliding

everywhere else, while the lower f̂ case has sliding above and below the water table, with no

sliding close to the water table even at zero effective pressure N̂ = 0.

high shear stress can be realized close to the sides of the glacier. Notably, this till
failure occurs in a part of the bed where the till is ‘dry’, in the sense that it is above
the elevation of the water table (which is at ẑ = r(1 − N̂ )). As yield stresses above
the water table are unaffected by changes in water table elevation, this ‘dry’ form
of sliding is also unaffected by changes in water table elevation, provided the water
table remains sufficiently low, corresponding to sufficiently high effective pressures.
At lower effective pressures, sliding will generally begin to occur below the water
table elevation. For wide channels, this happens first at the lowest point of the bed,
with regions of slip spreading up the sides of the channel as effective pressure is
lowered (figure 4b, c). For narrower channel geometries, shear stresses at the lowest
point of the bed tend to be somewhat lower than they are higher up the sides of the
channel, and a region of till failure tends to form some way up the side of the channel,
spreading out from there (figure 5b and figure 6a). For sufficiently large f̂ , N̂ can
then be lowered to its critical value N̂c, at which sliding occurs everywhere at the bed.
The location of the last part of the bed which fails as N̂ is decreased towards N̂c also
depends on f̂ and channel geometry. For wide channels, this is invariably located
at the glacier surface (figure 4). For narrower channels, it tends to be closer to the
water-table elevation, where bed yield stresses are highest (figure 5c). For very narrow
channels, the last bed patch to fail can sometimes be located at the lowest point of
the bed, because the narrow shape of the domain can make it difficult to generate
sufficiently high shear stresses there (figure 6). Whether this is the case or not depends
on f̂ . As described above, the decrease in scaled bed yield strength τ̂ c between the
lowest point of the bed and the water-table elevation is smaller for larger f̂ , which
in turn makes it more likely that the till at the lowest point of the bed will fail last.

5. Discussion
One important limitation on the yield stress model (4.2) in the previous section is

its reliance on a hydrostatic decrease in pore water pressure above the lowest point of
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the bed. Essentially, we are assuming that the bed is hydrologically ‘well-connected’,
which is often not true in practice, at least over sufficiently short time scales (e.g.
Kavanaugh & Clarke 2001). In fact, ice-stream flow represents a scenario diametrically
opposed to that considered in § 4. As discussed in Schoof (2004b), yield stresses at the
bed of ice ridges (the slowly flowing parts of ice sheets which separate rapidly flowing
ice streams) must generally be higher than at the bed of ice streams, yet ice ridges do
not always correspond to bed topographic highs which could explain a hydrostatic
decrease in porewater pressure and hence an increase in yield stress (Raymond et al.
2001). A number of factors unrelated to subglacial drainage, such as spatial variations
in the mechanical properties of subglacial till, could explain the high sediment yield
stresses which must prevail at the base of ice ridges, but a more likely explanation is
that water pressures there are simply low, and that a finite hydraulic gradient does
exist at the bed between ice ridges and ice streams. A possible explanation for these
spatial contrasts in basal water pressure may be thermal and hydraulic feedbacks
of the type studied by Fowler & Johnson (1996) and van der Veen & Whillans
(1996), which ensure that water pressures are not hydrostatic, at least for a glacier
or ice sheet of sufficient horizontal extent. However, given these caveats, our yield
stress prescription (4.2) still represents the simplest model for how we might expect
basal water pressure to behave in glaciers of relatively limited width, at least when
considering time scales large compared with short-term hydraulic events of the type
discussed in Kavanaugh & Clarke (2001) and references therein.

As pointed out in § 3.3, the model used here does not independently shed any
new light on glacier surge mechanisms. Mathematical surge models (Fowler 1987b,
1989; Greenberg & Shyong 1990; Fowler & Schiavi 1998; Schoof 2004a) generally
require a multi-valued relationship between ice discharge and local glacier geometry,
which enters into our problem through f and the ice thickness H . As shown in
§ 3.3, discharge Q increases monotonically with f . Moreover, our numerical results
also show that the scaled discharge Q̂ increases as N̂ decreases. Assuming for
a moment that the dimensional effective pressure N = ρgHN̂ remains constant
as glacier thickness H changes (corresponding to constant flux of meltwater in a
subglacial channel at the lowest point of the bed, cf. Röthlisberger 1972), we see
that N̂ decreases as H increases. Hence, from (4.6), it is clear that Q also increases
monotonically with ice thickness H , and hence that there is no multivaluedness in
the relationship between local glacier geometry and ice discharge. To explain surges
within the confines of the mechanical glacier flow model presented here is therefore
likely to require an additional description of subglacial drainage in the downstream
(y-) direction. This drainage model must then include a switch between different types
of drainage systems, and hence between different dimensional effective pressures N ,
as in Fowler’s (1987b; 1989) surge theory.

The application of our results to practical glacier dynamics problems faces a further
difficulty. Only for relatively low-angled glaciers does the possibility of force balance
violation not occur in our model. That is, only for glaciers which have small values
of the scaled body force f̂ can we lower effective pressure N̂ to zero and still
compute an ice discharge Q̂. For a wide glacier channel (θ � 1), we found that
f̂ < 1 − r is required to render negative the critical value N̂ c below which effective
pressure must not drop. Assuming a friction coefficient of µ = 1, this corresponds
to an angle of α < 5.71◦, while µ = 0.5 gives α < 2.86◦. Although this is a fairly
stringent limitation, large glaciers often do have small surface slopes which may fall
below this limit (Clarke 1991). Our results could therefore be used as a basis of a
highly simplified model for the flow of low-angled till-bedded glaciers, but we must
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bear in mind that most glaciers will not have a simple triangular cross-sectional
shape.

Many glacier dynamics models (Fowler e.g. 1987b; Vieli, Funk & Blatter 2001;
Pattyn 2002) rely on the heuristic assumption that sliding velocity ub at the bed
follows a power-law relationship with shear stress at the bed τb and local effective
pressure pe, of the form (see Schoof 2005, for a review of hard-bed sliding)

ub = Cτm
b p−n

e , (5.1)

where C, m and n are positive constants. In their simplest form, models of this type
then assume that the contribution Qs of sliding to ice discharge Q likewise follows
a power-law relationship of the same type, roughly of the form Qs = CWHub =
CWHτm

b N−n, where W is glacier width, H is ice thickness, N is a global measure
of effective pressure and τb = ρgH sin α, where α is the local surface slope (Fowler
1987a). In cases where force-balance violation is not an issue – which is the case
primarily for low-angled glaciers – our results for Q are qualitatively similar; Q tends
to increase when the scaled body force f̂ (representing glacier surface slope) and the
ice thickness H are increased, and when the scaled effective pressure N̂ = N/(ρgH ) is
decreased, corresponding to either a decrease in the dimensional effective pressure N

or an increase in H . It is worth noting that field measurements corroborate at least
some of these results empirically; Jansson (1995) observes that surface velocities on
at least one till-bedded glacier increase with decreasing effective pressure, and is able
to fit a power-law relationship to these two quantites for a limited range of effective
pressures.

These results lead us to conclude that models assuming power-law relationships
between discharge, ice thickness, surface slope and effective pressure of the form
above may yield results which reflect the qualitative behaviour of some low-angled
glaciers with deformable beds. The physical basis for the behaviour of ice discharge Q

is, however, different from that assumed by sliding laws of the form (5.1). In the case
of simple models using (5.1), sliding velocity is assumed to be an increasing function
of local shear stress and a decreasing function of effective pressure, usually as a
result of processes involved in sliding over undeformable beds (e.g. Fowler 1987a).
In our solid friction model, sliding velocity is not determined by local shear stress
and effective pressure at the bed (indeed, effective pressure determines shear stress
independently of sliding velocity, so long as there is sliding). Instead, the dependence
of Q on the effective pressure N̂ and driving force f̂ arises because the extent of bed
patches on which sliding occurs increases with f̂ and decreases with N̂ .

As mentioned above, the applicability of our two-dimensional model and the
similarities between it and more classical prescriptions for ice discharge Q are limited
to relatively low-angled glaciers, or cases in which effective pressure is sufficiently
large. The spectre of force balance violation in our model does not imply that real
glaciers are likely to start accelerating in the Newtonian sense as large ice avalanches;
it merely points to the fact that our channel flow model, in which longitudinal stresses
arising from variations in u with respect to the downstream coordinate y are ignored,
has limited applicability. In practice, longitudinal stresses are likely to ensure force
balance when the maximum friction force on a glacier cross-section is locally less than
the total driving force acting on that cross-section. It is therefore natural to look for
simplified models which can account for longitudinal as well as lateral shear stresses.
Short of solving the full Stokes equations for a three-dimensional glacier, the most
promising approach is to consider depth-integrated models which arise at leading
order in asymptotic expansions of the Stokes equations for ice masses with low aspect
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ratios. Suffice it to point out here that the ‘shelfy stream’ equations considered by
e.g. MacAyeal, Bindschadler & Scambos (1995), but with Coulomb-type friction rather
than a ‘hard-bed’ sliding law, are susceptible to a variational treatment analogous to
that used here. Similar solvability conditions to (3.8), now ensuring moment as well
as force balance, arise in that treatment, with Korn’s second inequality (Wang 2003)
replacing Poincaré’s inequality in their derivation; details of this theory are reported
in Schoof (2006).

6. Conclusions
This paper has set out a consistent theoretical treatment of glacier flow over a

Coulomb-plastic bed. Its practical use is mostly in providing a numerical method
for solving the problem, and in proving various qualitative attributes of solutions
such as the solvability condition (3.8), the positivity of the velocity field u and the
monotonicity of ice discharge Q =

∫
Ω

u with respect to driving force f . Although we
focused our attention on valley glaciers in this paper, the numerical method employed
here can also be used to study the shear margins of ice streams overlying plastic till.

The second half of the paper focused on the relationship between discharge in a
valley glacier and ice thickness, surface slope and subglacial effective pressure. The
most important result here is that effective pressure at the lowest point of the bed must
generally remain above a critical value in order to ensure local force balance; when
effective pressure drops below that value, longitudinal stresses in the ice must become
important. The (dimensional) critical value of effective pressure which controls this
switch in behaviour depends on the surface slope and thickness of the glacier, and
decreases with increasing ice thickness and surface slope. For sufficiently low-angled
glaciers, this critical value is negative and effective pressure at the lowest point of the
bed – where we envisage a subglacial drainage channel to exist – can be lowered to
zero without causing a local force balance violation.

When local force balance violation is not an issue, the discharge of a glacier
generally increases with ice thickness and surface slope, and decreases with effective
pressure. These dependences are also a feature of classical glacier dynamics models,
which often assume that sliding velocity at the bed is an increasing function of basal
shear stress and a decreasing function of effective pressure. The physical basis for
this behaviour is different in the present case, as increased discharge results from the
formation of larger bed patches on which sliding occurs rather than from a local
dependence of sliding velocity on bed shear stress and effective pressure. Nevertheless,
this result indicates that the results of classical glacier dynamics models may also
qualitatively apply to some till-bedded glaciers.
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